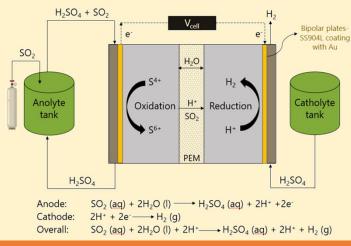


# Hydrogen production efficiency in SO<sub>2</sub> Depolarized Electrolyser -Impact of proton electrolyte membrane

Pragya Narayana Prasad<sup>a</sup>, Neha Garg<sup>a</sup>, Michael Gasik<sup>b</sup>, Annukka Santasalo-Aarnio<sup>a</sup>

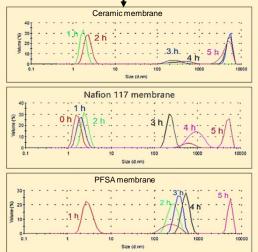

<sup>a</sup> Research group of Energy Conversion and Systems, School of Engineering, Aalto University, Finland <sup>b</sup> Department of Materials Science, School of Chemical and Metallurgical Engineering, Aalto University, Finland Email: pragya.narayanaprasad@aalto.fi

## Introduction

The SO<sub>2</sub> Depolarized Electrolyser (SDE) is a breakthrough in the production of hydrogen on a large scale. The working of the SDE can be explained as:

- Oxidation of SO<sub>2</sub> from +4 to +6 oxidation state to produce Protons ( $H^+$ ) and Sulfate ions (SO<sub>4</sub><sup>2-</sup>) at the anode <sup>[1]</sup>
- o The protons flow through a polymer electrolyte membrane (PEM) and reduce at the cathode to produce hydrogen.
- Along with protons, PEM also allows SO<sub>2</sub> to pass through leading to parasitic reactions at the cathode.
- SDE has lower standard reversible voltage, E<sub>0,SDE</sub> = 0.158V, compared to PEM water electrolyser with E<sub>0,PEM</sub> = 1.23V<sup>[3]</sup>.

The goal is to determine the effect of using different membranes in SDE to make it a viable technology for producing renewable hydrogen on a large scale by preventing parasitic reactions at the cathode.




### Sulphur particles observed in catholyte

Small sulfur particles: 1-10 nm

HySelect

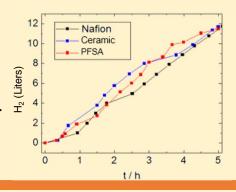
- Large sulfur particles: 100-10000 nm
- Particle growth begins after 2 hours with PFSA, 3 hours with Nafion, and 5 hours with Ceramic. ŧ



#### 8 6 I/A 4 Ceramic Nafion 117 PFSA 2 0 0 2 5 3 t/h

## Hydrogen produced with time

Cumulative hydrogen production after 5 hours is similar for all three membranes


## Methodology

- o Bench-scale electrolyser setup with Au electrocatalyst<sup>[2]</sup> was used
- Three membranes tested: Nafion 117, Ceramic, and PFSA - pre-commercial membrane
- o Initial operation without SO<sub>2</sub>; introduced after 500 s
- o SO<sub>2</sub> feed halted after 1 hour, operation continued with 350 mM SO<sub>2</sub> for 5 hours
- o Operating conditions: 15 wt% H<sub>2</sub>SO<sub>4</sub> as electrolyte, 1.7 V operating potential
- Photon Correlation Spectroscopy<sup>[1]</sup> (PCS) used to analyze sulfur particle formation in the catholyte.



#### Performance of SDE based on current produced

- Similar maximum current density observed for all separators.
- Nafion 117 and ceramic membranes exhibit faster current decrease compared to PFSA; after 5 hours, the current is 5 A for ceramic, 6 A for Nafion, and 6.5 A for PFSA



## Conclusion

- o The pre-commercial PFSA membrane shows steady performance in hydrogen production efficiency
- Additional testing needed to investigate SO<sub>2</sub> crossover using diffusion cell 0 experiments, to understand the differences in different separator materials
- Next steps: Identify and validate different strategies to prevent SO<sub>2</sub> 0 crossover, such as membrane coating or electrolyte solution modification.



- (1) Santasalo-Aarnio, A.; Virtanen, J.; Gasik, M., SO<sub>2</sub> Carry-over and sulphur formation in a SO<sub>2</sub>: depolarized electrolyser. Journal of Solid-State Electrochemistry 2016, 20, 1655-1663. https://doi.org/10.1007/s10008-016-3169-8
- (2) Santasalo-Aarnio A. Lokkiluoto A. Virtanen J. Gasik MM. Performance of electrocatalytic gold coating on bipolar plates for SO2 depolarized electrolyser. Journal of Power Sources. 2016 Feb 29;306:1-7
- (3) Gorensek, M.B., et al., A thermodynamic analysis of the SO<sub>2</sub>/H<sub>2</sub>SO<sub>4</sub> system in SO<sub>2</sub>-depolarized electrolysis. international journal of hydrogen energy, 2009. 34(15): p. 6089-6095.

This project is supported by the Clean Hydrogen Partnership and its members Hydrogen Europe and Hydrogen Europe Research under the Grant Agreement Nr. 101101498.





Co-funded by the European Union

## Results and Discussion